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Abstract

Learning how to generate descriptions of images or
videos received major interest both in the Computer Vision
and Natural Language Processing communities. While a
few works have proposed to learn a grounding during the
generation process in an unsupervised way (via an attention
mechanism), it remains unclear how good the quality of the
grounding is and whether it benefits the description quality.
In this work we propose a movie description model which
learns to generate description and jointly ground (localize)
the mentioned characters as well as do visual co-reference
resolution between pairs of consecutive sentences/clips. We
also propose to use weak localization supervision through
character mentions provided in movie descriptions to learn
the character grounding. At training time, we first learn
how to localize characters by relating their visual appear-
ance to mentions in the descriptions via a semi-supervised
approach. We then provide this (noisy) supervision into our
description model which greatly improves its performance.
Our proposed description model improves over prior work
w.r.t. generated description quality and additionally pro-
vides grounding and local co-reference resolution. We eval-
uate it on the MPII Movie Description dataset using auto-
matic and human evaluation measures and using our newly
collected grounding and co-reference data for characters.

1. Introduction
When humans talk about what they see, they not only

use common objects and terms, but typically refer to reap-
pearing entities, most commonly using names (“John”) and
referential words such as pronouns (“he”, “it”). To cor-
rectly generate descriptions with reappearing entities, one
needs to understand and link them across sentences and
visual appearances (images/frames). Current image/video
captioning datasets essentially ignore this aspect as they
ask to independently describe each image/clip with a sin-
gle sentence. At the same time, e.g. visual storytelling [17]
and movie description [37] ultimately require solving this
problem. However, the first approaches on visual story-

Sophia		talks	to	 Emma			while	they	fold	clothes	and	watch			Zoe. This	work: She			walks	over	to	 Zoe

Someone	talks	to	Someone	while	they	fold	clothes	and	
watch	Someone.

Prior	work:	Someone	walks	over	to	Someone.

Current	clipPrevious	clip

Figure 1: Bring in the color: our task is to generate grounded and
co-referenced descriptions for the current clip using pronouns and
new or reappearing character IDs, which are grounded, i.e. local-
ized in the current clip (boxes and lines) and visually co-referenced
to the previous clip (dashed lines). The visual grounding allows for
co-reference to the previous clip/sentence which enables us using
the pronoun “she” to refer to the first ID (Sophia).

telling [17] so far have not taken it into account, and cur-
rent movie description challenges and approaches [35, 48]
abstract from it by looking at a single clip at a time and
replacing all the character mentions with e.g. “Someone”.

In this work we address grounded co-reference reso-
lution, with application to movie description. The most
prominent entities in movies are the people or characters.
In fact, there is a long line of work which aims to link
character mentions in movie or TV scripts with their visual
tracks [5, 8, 42, 46, 27, 3, 31]. However, all these works are
already given the description for all movies where they want
to predict the linking. In contrast we want to generate a de-
scription, while jointly linking it with the currently and pre-
viously depicted character’s visual presence. Specifically,
the task we address in this work is to generate descriptions
for movies and at the same time localize or ground the char-
acters, recognize their gender and refer to them consistently,
i.e. co-reference them across sentences, as visualized in Fig-
ure 1. Importantly, rather than trying to obtain consistent ids
in the entire movie, we focus on robust local co-reference
resolution on two consecutive sentences/clips. We argue
that local co-reference resolution is an important problem
on itself. On the one hand there are many characters with-
out proper names and/or with only a few occurrences, which
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can and should be resolved locally, e.g. “The priest takes
their vows. He declares them wife and husband”. On the
other hand, there are many hard decisions which have to be
made locally, e.g. which character to describe and whether a
character should be referenced by proper name or pronoun.
To clarify, we do not generate the true proper names of the
characters, but only identities with gender. We use a prede-
fined set of names in our examples (e.g. Sophia). In future
work we believe the true names could be extracted either
from dialog, or from one/a few annotations per character.

Approaching the joint description and grounding task re-
quires three main ingredients: we need to localize the char-
acters, we need to decide which character(s) to pay atten-
tion to, and we need to co-reference visual characters’ ap-
pearances in neighboring sentences/clips. In Section 4 we
detail how we approach character localization using head
detection and tracking via a two-stage clustering approach.
While generating the sentence, we advocate to jointly de-
cide which character to pay attention to and if and how
to co-reference it to the previous grounded characters. In
Section 5, we propose to adapt the attention mechanism
[1, 53] for this and extend it to attend jointly over both
problems: grounding (i.e. track selection) and co-reference
(i.e. track linking). A key insight is that this can not be
learned purely from sentence supervision for generation.
Instead, we supervise the joint-attention mechanism with
automatically obtained linking of character mentions and
tracks (Section 5.2). We note that at test time this super-
vision is not available and the system has learned, how to
jointly ground, co-reference, and describe.

The contributions of our paper include: a) a new task of
movie description with grounded and co-referenced charac-
ters; to foster research in this direction we will share our
newly collected co-reference annotations and grounding of
character mentions in the MPII-MD dataset (Section 3); b)
a novel approach which addresses this problem by jointly
learning to ground the described characters and perform lo-
cal co-reference resolution between the neighboring clips;
c) a robust automatic way of obtaining linking between
character mentions in text and visual tracks in video, which
we use to supervise our description approach and which we
show is essential for the co-reference resolution task.

2. Related Work
Our work aims to do three tasks jointly: generating video

descriptions, grounding, and co-reference resolution. We
review related work in these three directions with a focus
on works which attempt multiple tasks at once. As we focus
on people grounding and co-reference, we also discuss the
related work on person re-identification and track naming.
Description generation. Generating natural language about
visual content has received large interest since the emer-
gence of recurrent networks. Typically the focus is to ge-

nerate a single sentence about a single image [7, 19, 26, 50,
53], video [7, 12, 33, 38, 47], or most closely to this work,
movie clip [34, 49]. Several works also produce ground-
ing while generating the description: [53] propose an atten-
tion mechanism to ground each word to spatial CNN image
features, [55] extend this to bounding boxes, [54] to video
frames, and [59] to spatial-temporal proposals. [24] look
into evaluating attention correctness for image captioning.
[18] take a different direction and build a model which de-
scribes the entire image by jointly predicting large num-
ber of bounding boxes and a corresponding short phrase
for each box. [23] parse the visual 3D scene and generate
coherent multi-sentence descriptions where the objects are
grounded in 3D cuboids. Multi-sentence image/video de-
scription has also been explored in e.g. [17, 33, 40, 57].
Grounding objects in images/video. Grounding nouns as
well as complex natural language expressions in images
[16, 20, 25, 30, 32, 52, 58] and video [22, 56] has recently
received increased interest. The focus in our work is to lo-
calize people in a video while mentioning them in a gene-
rated sentence. For example, when mentioning a character
who is jogging in a park, we want to localize this person in
the video. Additionally we are interested in obtaining visual
tracks for character mentions in text, for which rely on the
semi-supervised grounding approach from [32].
Co-reference resolution. Co-reference resolution is the
task defined in linguistic community [2], where the goal is
to establish correct links between named entities and ref-
erences to them, e.g. pronouns. [31] address co-reference
resolution in TV show descriptions with a bidirectional op-
timization using character visual appearance and linguistic
co-reference resolution features.
Person re-identification. Person re-identification from
face/head images is a well studied problem and recently
many deep learning based approaches have been proposed
to address it [21, 28, 39, 43, 44, 62]. Our work is related to
this line of work as we aim to re-identify characters between
two video clips while generating a video description.
Linking tracks to names. Related works [5, 8, 31, 42, 46]
propose datasets for character identification targeting TV
shows, which rely on alignment of video to TV scripts. The
goal is to track faces in the video and assign names to them.
Typically the tracks include background characters. [3] at-
tack the problem of learning a joint model of actors and ac-
tions in movies using weak supervision provided by scripts.
[27] propose a multiple instance learning based approach
which focuses on recognizing background characters, and
show significant improvement over prior work. There are
two differences between ours and these prior works. First,
we aim to re-identify characters locally, without ever seeing
them before. Second, when obtaining the matching between
names and tracks, our goal is to predict the grounding for a
given character, not to name all the tracks.
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Names Pronouns All Mentions Boxes

Training 37,432 15,093 52,525 489
Validation 3,440 1,092 4,532 412
Test 4,453 1,654 6,107 1,748

Total 45,325 17,839 63,164 2,649

Table 1: Left: number of annotated mentions, right: number of
named bounding boxes, on MPII-MD [35].

3. A Dataset for Grounded and Co-Referenced
Characters

One of the goals in this work is to learn the visual co-
reference resolution. To address and evaluate this task we
require annotations on language and visual side. On the lan-
guage side we want to know when different mentions refer
to the same person. On the visual side we require grounding
of names to visual appearances. Thus we collect new anno-
tations for character co-reference resolution and grounding
for the MPII Movie Description (MPII-MD) dataset [35].
Co-reference annotations for character mentions. First,
we aim to label all the character mentions in the movie de-
scriptions of the MPII-MD. We semi-automatically1 anno-
tate names and co-references for each movie. E.g. there
might be different ways of referring to the same charac-
ter (“Mary Jane” as “MJ”), so we link them together un-
der one “alias”. Additionally, we annotate the gender of
all the characters. As the last step, we annotate pronouns
“he” and “she” in all descriptions. When possible we
link them to one of the existing names (with some excep-
tions for rare characters which were not named). In to-
tal we label 45,325 name mentions and 17,839 pronouns,
see Table 1. With this information we create our corpus
MPII-MD Co-ref+Gender, where we transform the orig-
inal MPII-MD descriptions so that every character men-
tion, which appears in a previous sentence, is replaced
with “MaleCoref”/“FemaleCoref”, otherwise with “Male-
Name”/“FemaleName”. We emphasize that this is the only
difference to the standard MPII-MD, i.e. the video clips and
splits are identical.
Grounded character annotations. To evaluate the correct-
ness of character grounding we annotate some characters
with bounding boxes in video frames. For a subset of
movies from MPII-MD Training, Validation and Test set
we randomly select sentences and annotate all the men-
tioned characters. Specifically, whenever the character is
mentioned in the sentence and is visible in the correspond-
ing clip, we annotate a few frames of the clip with his/her
head bounding boxes. As we also want to evaluate the co-
reference correctness, we additionally annotate pairs of con-
secutive sentences/clips from the Test set. In total we label
2,649 bounding boxes with names, see Table 1.

1More details can be found in the arXiv version of this paper [36].

4. Visual Representations for Characters and
their Context

In this section our goal is to localize individual charac-
ters in video and extract visual representations informative
of their appearance and context. Towards this goal we first
detect, track, and extract localized representations for indi-
vidual characters (Section 4.1), and then extract global rep-
resentations which capture the scene and context not cap-
tured in localized representations (Section 4.2).

4.1. Character tracks and representations

To localize the characters in movies we focus on localiz-
ing their heads as most of the time the head of a character is
shown, but frequently not the full body. In contrast to prior
work [31] we do not only focus on frontal faces but also al-
low for more challenging, e.g., back views. We detect the
heads and track them with a two-step clustering approach,
which is able to track across shot boundaries. We extract vi-
sual representations on the tracks, informative for estimat-
ing characters’ identity, activity, gender, and importance.
Head detection. We detect all people in our videos using a
head detector. Unlike conventional face detectors, our head
detector can reliably detect profile faces and even back view
heads. This is desirable as movies contain a large variety of
view angles on heads. Our detector is based on the Faster
R-CNN [9]. For training we collect head bounding box an-
notations over the PASCAL VOC 2010 trainval set. The
dataset consists of 10,103 images of 7,372 head instances.
6,659 images do not have people, but we retain them as
source of negatives. We run our detector1 on every frame
of MPII-MD and keep all the head detections with scores
≥ 0.5 and both dimensions ≥ 40 pixels.
Head tracking. After obtaining the head detections we have
to track them within the video clip, i.e. group all detections
corresponding to one person together. We have to consider
that movies have shot boundaries (rapid changes in a cam-
era viewpoint/angle), thus motion can not be the only cue
for tracking, and we require appearance as well. This moti-
vates our two-step approach, where we first group head de-
tections within shots based on their motion and then group
the obtained tracks based on their appearance.

We first obtain the shot boundaries with a shot bound-
ary detector1. We select the parameters on a set of anno-
tated frames and get the F-score 0.98. We try to detect all
boundaries if possible and not produce too many false posi-
tives (wrong boundaries). Our tracking framework is based
on [45], a multicut [4, 11] tracker for pedestrians in street
scene videos. The idea is to build a graph based on person
detections in video, and then obtain the tracks by partition-
ing the graph into an optimal number of connected com-
ponents, based on attractive and repulsive pairwise terms
between pairs of detections. We adapt the multicut tracker
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to generate tracks for person heads in video clips. We cast
our task as a two-level clustering problem. First, we gene-
rate tracks from detections that are obtained on the consec-
utive frames within shots. For that we employ simple ge-
ometric features between detection bounding boxes. Given
two bounding boxes b and b′, with spatial-temporal loca-
tions (x, y, t) , scales h and corresponding image regions
B, we define the following variables: h̄ = (hb+hb′ )

2 , ∆x =
|xb−xb′ |

h̄
,∆y = |yb−yb′ |

h̄
,∆h = |hb−hb′ |

h̄
, IOU = |Bd∩Bd′ |

|Bd∪Bd′ |
,

where IOU is the intersection over union of the two de-
tection bounding boxes. The pairwise feature is defined
as (∆x,∆y,∆h, IOU). We also add the quadratic terms
of each feature to form a nonlinear mapping from feature
space to the pairwise potentials. Second, we cluster the ob-
tained tracks, selecting the ones which are at least 5 frames
long for computational efficiency. Here we rely on the vi-
sual appearance features. For each track we mean pool the
FaceVGG [28] fc7 representations on the head crops. We
then compute the cosine distance between pairs of tracks
and use 1− distance as pairwise potentials.
Track representations. For re-identification of characters
we rely on the FaceVGG [28] fc7 representation, referred to
as vhead in the following. We mean pool the representations
over the head crops clustered together in a track t and refer
to it as vhead(t). We discuss in Section 5 how we estimate
the similarity of two tracks for character re-identification in
our pipeline. We include the person body context which
could be useful to e.g. predict the person’s activity. We ex-
tract the body region w.r.t. the head bounding box: 3 times
wider and 6 times taller. We experiment with two visual
features on the body region. First is the VGG [41] fc7 rep-
resentation fine-tuned for 393 activities from the MPII Hu-
man Pose Activity dataset [29], provided by [10]. We only
use the body crops ignoring the additional context features
as they would be similar across tracks and thus likely not
help to distinguish tracks, but significantly increase compu-
tation. Another feature is the ResNet [13] (pool5), trained
on ImageNet [6] for object classification. We mean pool
both visual representations over the body crops in a track
and refer to that as vbody(t). In the experiments we spec-
ify if/which feature is being used. We find, as [27], that
the described characters are often in the front, center, and
large compared to the background characters. Rather than
manually defining a good function we provide the follow-
ing track statistics vstat(t) and allow our approach to learn
from this data: track length, mean and standard deviation of
head width/height/center/detection score. We do not extract
designated gender features, as we find that vhead and vbody

carry strong information about this aspect. It is straightfor-
ward to include a targeted representation as part of future
work. All the representations are normalized element-wise
by mean centering and dividing by the standard deviation to
improve learning subsequent functions with deep learning.

4.2. Holistic video representations

In the previous section we discussed how and which lo-
calized features we extract for characters. To additionally
capture context, objects, and scene information, important
for movie description, we additionally rely on global repre-
sentations provided by [34] for the MPII-MD dataset. We
shortly review them in the following: 1) scores from 146
activity classifiers trained with Dense Trajectory features
[51]; 2) scores from 99 object classifiers trained with LSDA
[15] responses; 3) scores from 18 scene classifiers trained
with PLACES-CNN [61] responses. All the classifiers were
trained in [34] using the words from descriptions as labels.
The provided visual feature vglobal is a 263 dimensional
concatenation of all three groups of scores.

5. Generating Grounded and Co-Referenced
Descriptions

As discussed in the introduction, we focus on character
grounding and local co-reference resolution, while generat-
ing the description. More specifically, we aim to predict the
character grounding and do co-reference resolution given
the previous sentence grounding. At test time this allows to
e.g. process the movie sequentially from start to end. In the
following we rely on our transformed description corpus,
MPII-MD Co-ref+Gender, described in Section 3.

The key ideas of our approach are to predict grounding
and co-reference resolution jointly while generating the sen-
tence (Section 5.1) and to learn grounding and co-reference
with noisy supervision at training time obtained automati-
cally by linking character mentions and tracks (Section 5.2).
Figure 2 provides an overview of our model.

5.1. Predicting grounding and co-reference during
sentence generation

For generating sentences we rely on a recurrent LSTM
[14] network as defined in [60]. To predict the hidden state
at step τ of the sentence, we provide it with the previous
word wτ−1 and hidden state hτ−1, as well as the current
visual representation vτ : hτ = fLSTM ([wτ−1, vτ ], hτ−1)
where [, ] denotes concatenation. The fLSTM has an ad-
ditional hidden state or memory cell ct which is not ex-
posed. The word is then predicted as wτ = fpred(hτ ) =
Softmax(W predhτ +bpred) which can be supervised with
the ground truth word ŵτ . Note that our vocabulary w ∈ V
does not contain any character names, but only V person =
{MaleCoref,FemaleCoref,MaleName,FemaleName} ⊂ V .

In the following we discuss how we obtain a vτ which al-
lows to predict the correct word and at the same time solve
the grounding and co-reference problem. We formulate the
problem in terms of tracks which are the result of the head
tracking in Section 4.1. We have tracks tc ∈ T c in the
current clip (C = |T c|), and tracks tp ∈ T p in the previous
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Figure 2: Our model. Some components are omitted for clarity, e.g. we omit the body and statistic representations.

clip (P = |T p|). We always assume the sentences in the
previous clip are already grounded to tracks and only con-
sider those tracks which correspond to mentions of char-
acters in the sentence. Whenever we generate a word wτ
which refers to a person wτ ∈ V person, the task is to also
select which track tĉ it corresponds to in the current clip and
which track tp̂ in the previous clip. To account for the case
when the person was not mentioned in the previous sentence
we include t0 in T p which represents a null track, which
has to be selected to indicate that we describe a new name.
As we are only modeling two consecutive clips at a time,
this means if tp̂ = t0 we want to generate MaleName or
FemaleName and MaleCoref or FemaleCoref otherwise.

Track re-identification for visual co-reference. To esti-
mate similarity of two tracks tp and tc we learn a weighting
after element-wise multiplication2:

vid(tp, tc) = vhead(tp)� vhead(tc) (1)

f id(tp, tc) = W idvid(tp, tc) (2)

For p = 0, which indicates that no similar track exists, we
set vid(t0, tc) = −1. In preliminary experiments we found
that this works better than 0, as values vid are close to 0.

Learning grounding and co-reference jointly. The goal
of our approach is to select a track tĉ and the correspond-
ing previous track tp̂ which matches the person we are de-
scribing with the current word at time τ , in other words we
ground this person in tĉ and link it to tp̂. As noted above if
tp̂ = t0 there is no previous track with the same identity as
tĉ. We propose to jointly predict ĉ and p̂ using an attention
mechanism which takes into account the re-identification

2Superscript denotes names of variables/functions, subscript denotes
indexes. W / b are learned multiplicative weights / additive bias weights.

and visual representations as well as the hidden state hτ−1

of the recurrent LSTM network generating the description.
The visual features are jointly embedded in the same

space as the embedding learned for the hidden state:

fvisual(tp, tc) = Wheadvhead(tc) +W bodyvbody(tc)

+W statvstat(tc) + f id(tp, tc) + bv (3)

Afterwards visual and hidden state representation are
element-wise multiplied and we learn a function to predict
the attention α. This is inspired by [53], who combine con-
volutional visual features and the recurrent hidden state in
the same way to predict spatial attention. Conceptually dif-
ferent, we predict two aspects jointly, the grounding tp and
linking tc of tracks from different clips.

ᾱp,c,τ = fatt(tp, tc, τ) =

Wαφ(Whhτ−1 + bh)� φ(fvisual(tp, tc)) + bα (4)

with the htan non-linearity φ(x) = ex−e−x

ex+e−x . The attention
is normalized with softmax and then we use the predicted α
in a weighted sum to get the new local visual representation:

αp,c,τ =
exp(ᾱp,c,τ )∑P

i=0

∑C
j=1 exp(ᾱi,k,τ )

(5)

vgroundedτ =

P∑
i=0

C∑
j=1

αp,c,τ [vhead(tc),

vbody(tc), v
stat(tc), v

id(tp, tc)]. (6)

We use this together with the global/holistic video rep-
resentation vglobal (see Section 4.2) and the previous
word wτ−1 to predict the next hidden state of the re-
current LSTM network as discussed above: hτ =
fLSTM ([vgrounded, vglobal, wτ−1], hτ−1).
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Supervising grounding and co-reference. While this
system can be trained by only providing reference sentences
as supervision, it is difficult to jointly correctly learn the
grounding and co-reference resolution. We thus discuss
in the next section how to obtain supervision for αp,c,τ .
Instead of annotating all characters mentions with tracks,
we try to automatically predict the correct track t for each
character mention wτ in the sentence. As we have ground
truth co-reference on the text side for the entire training
data (Section 3), we can construct the joint ground truth
α̂p,c,τ from the groundings per clip α̂p,τ , α̂c,τ . For all non-
character words wτ /∈ V person, no supervision and thus no
loss is provided. The losses from sentence supervision and
grounding/co-reference supervision are weighted equally.

5.2. Obtaining automatic supervision:
linking character mentions and tracks

In this section we discuss how to ground or link char-
acter mention with id mτ in text at position τ to a corre-
sponding visual track tc in the video to provide ground truth
α̂c,τ used above. In contrast to sentence generation, here
we explicitly use the character mentions m (e.g. ”Harry”)
which appear in the text. In other words we want to ro-
bustly choose the correct track for all character mentions.
Note, that this is a slightly different task than in e.g. [27],
who aim to link all the visual tracks to correct names. To
link the name mentions in text to tracks we adapt the re-
cently proposed semi-supervised approach GroundeR [32].
This approach was initially proposed for the task of localiz-
ing text phrases within an image without localization super-
vision, i.e. where the phrase is located. The main idea is to
learn to attend to the right bounding box out of a set of pro-
posals, by trying to reconstruct the phrase. We adapt this to
our scenario by learning to localize a character mτ,k in the
set of tracks Tk from clip k, where characterm is mentioned
in the sentence k at position τ . We represent tracks with
vhead(tc,k) and encode character names m together with an
identifier of the gender(m) ∈ {M,F} as separate word in
an LSTM. Adding the gender allows the model to exploit
correlations with different visual appearance of male versus
female people and thus helps selecting the right track. In
the special case when the sentence k only contains a single
name and the clip k contains a single track, i.e. |Tk| = 1,
we assume that grounding is correct and this information
is used as additional supervision, thus enabling the semi-
supervised setting of [32]. To train the model we use pairs
([gender(mτ,k),mτ,k], {vhead(tc,k)}c∈{1..C}) and predict
the grounding as the track with maximum attention from all
the tracks in the clip.

6. Evaluation
We first evaluate the quality of our person head detection,

tracking, and automatic linking between character names

Recall Training Val Test Accuracy Train Val Test

Detection 82.00 65.78 84.73 GroundeR 78.12 84.46 80.35
Tracking 78.53 61.65 81.41

Table 2: Left: detection and tracking recall on the annotated
heads. Right: linking accuracy on the annotated names/bounding
boxes (evaluated on the boxes covered by the tracks). In %.

and tracks, obtained in Section 5.2. Then we evaluate the
grounded movie description by breaking it down into eval-
uating description quality and grounding quality.

6.1. Head detection and tracking

We evaluate our head detections and tracks on the col-
lected bounding box annotations from Section 3. Given the
annotated bounding boxes we compute detection recall by
looking whether there is a head detection in a given frame
that has an Intersection Over Union (IOU) ≥ 0.5 with the
annotated head box. The track recall is computed similarly,
based on the presence of the track that goes through the
given frame while overlapping with the annotated box with
IOU ≥ 0.5. Table 2(left) shows recall on the Training, Val-
idation and Test parts of the annotations. We analyze the
performance of our head detector on the Training annota-
tions and find that multiple factors, e.g. motion blur, occlu-
sion and head size (both small and large), contribute to the
missing recall. On the well visible heads we achieve 93.2%
recall. The tracking recall is slightly lower, due to the short
track rejection (Section 4.1). Tracking can be hard when
heads are observed from unusual angles. Overall, we find
that our annotations are rather challenging but the obtained
performance is reasonable. We also note that our approach
already works with just one good track for each character.

6.2. Linking characters to tracks

For every clip we restrict the number of tracks to 50.
If > 50 tracks are available we keep the longest, other-
wise we zero-complete the missing tracks. For the previous
track we consider at most 7 tracks in addition to the “null”
track (no match among the previous tracks). Thus there are
8 × 50 possible choices to predict the character grounding
and co-reference during sentence generation. We first train
the GroundeR [32] approach on Training movies only to es-
timate the hyper parameters. Next we combine the Training,
Validation and Test movies and train GroundeR on this joint
set. We evaluate the accuracy of the obtained predictions on
the annotated name/bounding box pairs (Section 3). Given a
name we choose the top scoring track as the grounding pre-
diction. For this track we then check whether it contains the
annotated frame and overlaps with the annotated box with
IOU ≥ 0.5. Table 2(right) shows that GroundeR robustly
predicts the correct track for a given character name.
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6.3. Evaluating description quality

We evaluate our approach in terms of description quality
and compare it to a few baselines as well as prior work via
automatic and human evaluation. We report all the standard
automatic measures in Table 3. The human judges were pro-
vided with pairs (reference sentence; predicted sentence),
and asked to compare them w.r.t. being helpful for a blind
person to follow the events in the video [37]. The judges
could decide that one sentence is better than the other or
both are similar. Each pair is evaluated by 3 human judges.
Next, for every system we compute the percentage of times
when at least 2 out of 3 judges decided that the predicted
sentence is similar or better than the reference. Table 3
presents the results of human evaluation in the last column.

The top of Table 3 contains the reference numbers from
prior works on the standard MPII-MD. We can not use
attention supervision or evaluate grounding on standard
MPII-MD, which are our core contributions. Our reduced
model “Our w/o α” achieves similar scores to prior work.

The middle and bottom part of the table presents results
on MPII-MD Co-ref+Gender, thus the numbers between the
two settings are not directly comparable, as the references
change which strongly affects the automatic measures. To
address this we evaluate the approach Visual-Labels [34]
on our corpus. Unlike [34], we do not ensemble multi-
ple models. For a fair comparison with the Visual-Labels,
in the middle part of Table 3 we provide variants of our
model that do not have access to the previous clip char-
acter grounding but instead select the 7 biggest previous
tracks if sorted by track length times average track area.
We compare a variant without the body context features
(“Our”), with body features (“Our + Activity”) as described
in Section 4.1, and one without the attention mechanism but
with activity feature encoded jointly with the holistic fea-
ture (“Our + Activity w/o attention & co-reference”). In the
bottom part of Table 3 we use the automatically obtained
previous clip grounding (via Section 5.2, which has access
to the previous ground-truth sentence). We compare “Our”,
“Our+Activity”, and “Our+ResNet”, and ablate the impact
of the grounding and co-reference supervision (“Our w/o
α̂”) and statistic features (“Our w/o statistic features”).

From Table 3 we see that: a) the systems “Our” / “Our +
Activity” without previous clip character grounding achieve
similar or better sentence quality than the Visual-Labels
baseline; b) the variant with extra body context but with-
out attention mechanism gets lower human score than our
full system (11.0 vs. 15.0); c) providing grounding and
co-reference supervision α̂ benefits the sentence quality; d)
overall, body context features improve the scores, while the
statistic features do not have a significant impact; e) the
best result, according to human evaluation, is achieved by
the variant of our approach “Our + Activity” without pre-
vious clip character grounding. A possible explanation for

Automatic Human
Approach Bleu-4 Metor Rouge CIDEr judgment

Standard MPII-MD with “Someone”
Best of [35] 0.47 5.59 13.21 8.14 -
Visual-Labels [34] 0.80 7.03 16.02 9.98 -
S2VT [49] 0.64 7.10 15.69 6.96 -
Our w/o α̂ 0.84 6.43 16.10 10.66 -

MPII-MD Co-ref+Gender
without previous clip character grounding

Visual-Labels (no ensemble) 0.66 5.21 13.94 10.34 11.8
Our + Act. w/o att.&co-ref. 0.74 5.58 14.49 10.22 11.0
Our 0.67 5.06 13.17 10.89 14.8
Our + Activity 0.71 5.31 14.14 11.33 15.0

with previous clip character grounding
Our w/o α̂ 0.66 5.82 14.29 10.48 10.8
Our w/o statistic features 0.75 5.81 14.97 11.65 -
Our 0.68 5.81 15.33 11.70 14.0
Our + Activity 0.82 6.17 16.12 12.64 14.5
Our + ResNet 0.88 6.00 15.70 11.76 13.0

Table 3: Automatic and human evaluation of description genera-
tion on the test set of MPII-MD; for discussion see Section 6.3.

this is as follows. In the automatically obtained previous
clip’s character grounding we might: a) link the characters
to tracks correctly; b) link them incorrectly; c) miss some
links if names are absent. In a) we follow the storyline of
the movie. When we instead use the 7 largest tracks of the
previous clip, we bias the description of the current clip dif-
ferently, e.g. focus on the most salient characters. The ob-
tained descriptions could be ranked higher by the humans,
as they only see the current clip in isolation. For b) and c) it
is naturally more difficult to get a correct description.

6.4. Evaluating grounding quality

We evaluate the correctness of the predicted grounding,
co-reference and character specific wordwτ ∈ {MaleCoref,
FemaleCoref, MaleName, FemaleName}. We evaluate
our predictions on the manually obtained ground-truth
(Section 3) and automatically obtained ground-truth (Sec-
tion 5.2). For each of the named bounding boxes we get the
track which overlaps with it most, for every character men-
tion we obtain one or more associated ground-truth tracks.
In total we obtain 186 sentences with manually obtained
grounding and co-reference. For the automatic annotations
we rely on a complete MPII-MD Test set (6, 578 sentences).

We break down the evaluation in three steps: Grounding,
Grounding + Co-Reference, Grounding + Co-Reference +
wτ . We compute precision and recall for each step and re-
port the F1 score. Precision is computed as a percentage of
predictions {αp,c,τ , wτ}, which are present in ground-truth.
For Grounding we check whether the track tc is present
among ground-truth tracks, for Co-reference it also has to
be correctly linked to a track tp from the previous clip, for
the final step the predicted word wτ should also be correct.
For recall computation we check whether ground-truth pairs
{α̂p,c,τ , ŵτ} are found among the predictions.
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manual labeled subset automatic gt, full set
F1 score Ground +Co-Ref +wτ Ground +Co-Ref +wτ

Baselines with heuristic attention
[34] Center 59.21 19.33 13.83 36.17 24.52 17.26
[34] LxA 69.58 23.93 18.80 41.62 27.58 19.82
[34] LxA,Sim 69.58 39.05 6.07 41.62 29.76 13.11

Our w/o α̂ 64.60 21.75 13.47 46.19 28.88 20.41
Our w/o stat.feat. 70.77 50.34 44.57 46.34 38.14 32.87
Our 69.17 53.92 49.55 47.24 38.47 33.88
Our + Activity 71.99 50.54 45.63 53.12 42.15 37.23
Our + ResNet 69.76 51.51 46.54 54.73 43.17 37.92

GroundeR gt 89.10 84.36 84.13

Table 4: Grounding evaluation on the Test set. For discussion see
Section 6.4.

The top part of Table 4 shows a set of baselines where
we aim to obtain the grounding and co-reference resolu-
tion as a post-processing after the sentence was generated.
We use Visual-Labels [34] as a sentence generation base-
line. We try multiple heuristics to select the track: cen-
tral position (Center), size, e.g. length times average area
(LxA), and use a simple co-reference resolution method:
if there are any tracks in the previous clip, we pick the
one which is most similar to the selected track as its co-
reference (LxA,Sim). The similarity is estimated as 1 −
cosine(vhead(tc), v

head(tp)). The bottom part of the table
lists the variants of our approach introduced earlier. Table
4(left) presents the evaluation with the manually obtained
ground-truth. In the bottom line we evaluate the quality of
automatic ground-truth predictions from Section 5.2. As we
see the predictions are overall quite reliable. Encouraged by
that we perform the evaluation on this automatic ground-
truth on the complete Test set, Table 4(right). We note, that
the manually annotated set covers only 2.8% of the full test
set, so the results on the full test set are more stable.

We make the following observations: a) the baselines
are competitive in the grounding task, but fall far below our
approach in the co-reference task, more pronounced on a
full Test set (right); this can be attributed to a more chal-
lenging data distribution: the complete Test set contains
sentences/clips where people are absent and that has to be
recognized correctly, while the manually annotated set al-
ways contains people and is biased towards co-references;
b) grounding and co-reference supervision α̂ is very impor-
tant to learn the co-reference prediction; c) statistics fea-
tures, although they do not impact the description quality
significantly, benefit the co-reference resolution; d) on the
full Test set “Our + Activity” and “Our + ResNet” bene-
fit from additional body context and achieve better perfor-
mance than the variant “Our”; one observation we make is
that these two variants are more accurate with respect to
presence/absence of people in the sentence/video which im-
pacts the precision and thus the F1 score; e) our approach
is doing quite well in the final task, i.e. the language model

Sophia			gags	as	she	pushes	past	him	and	walks	out. Our: She			and	 Jacob			walk	down	the	corridor
Visual	Labels	[34]:	Someone	strides	to	the	window.

Current	clipPrevious	clip

Daniel				runs	to	the	alarm	console	and	turns	it	off	with	
two	seconds	to	spare.

Our: Jacob		and	 Daniel			go	to	the	door.
Visual	Labels	[34]:	
Someone	enters	the	room,	then	follows	the	door.

Current	clipPrevious	clip
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Figure 3: Qualitative results of our approach on the grounded
movie description task. Given a previous grounding we predict a
sentence, grounding and co-reference.

correctly learns when to use co-references and recognizes
the gender information. In Figure 3 we provide some qual-
itative examples with the predictions from our approach.

7. Conclusions

In this work we look at the novel task, generating de-
scriptions with joint grounding and co-reference resolution
of person mentions. We have proposed a novel approach,
which relies on an attention mechanism that jointly learns
to solve the grounding and co-reference resolution while
learning to describe the video clip. Using an automatically
learned linking between names and tracks we can provide
supervision into our approach which significantly improves
its ability to perform co-reference resolution. We demon-
strate encouraging results in a complex task of grounded
movie description and achieve improvements over multi-
ple baselines. Our approach generates sentences of better
quality than the baselines as shown by automatic and hu-
man evaluation. Overall, our approach can describe video,
reason about persons identities, recognize their genders and
localize them in video. We believe that this work is a first
step towards fully coupling generation and grounding while
performing image/video description. We will release the
annotations and extracted tracks and hope that this will ben-
efit other researchers who work on linguistic and/or visual
co-reference resolution, movie question answering, visual
storytelling, and multi-sentence video description.
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