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Goal

Design an Optical Flow method that
« performs well on human motions
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Problem

Classical methods work but are slow FlowNet2 | FlowNet LDOF PCA-Layers
Fast and compact deep networks do not generalize : | r
well to human motions | : |
No ground truth human optical flow data for training |
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Use SMPL [1], a realistic human body model and ~=-mmm
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Use this data for training small neural networks
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* Methods trained on MHOF predict more detailed optical flow for humans with sharper edges

Quantitative Results
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 SPyNet trained on SHOF outperforms all generic methods
e PWC trained on MHOF outperforms all generic methods
 Training on MHOF improves results on body pixels

Conc\usmn

Training on the human flow datasets improves optical flow estimation
Our models improve over generic state-of-the-art flow prediction methods while being substantially smaller and

faster

Improvements over state-of-the-art methods are strongest for human regions of the image

Qualitative results suggest generalization from synthetic to real data
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Code, data and trained models are avalilable at -
http://humanflow.is.tuebingen.mpq.de/

http://ps.is.tue.mpg.de/




