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S1. Implementation Details
S1.1. Model Architecture

We use the SMPL [10] (for CAPE data) and SMPL-
X [20] (for ReSynth data) UV maps of 128 × 128 × 3 res-
olution as pose input, where each pixel is encoded into 64
channels by the pose encoder. The pose encoder is a stan-
dard UNet [24] that consists of seven [Conv2d, BatchNorm,
LeakyReLU(0.2)] blocks, followed by seven [ReLU, Con-
vTranspose2d, BatchNorm] blocks. The final layer does not
apply BatchNorm.

The geometric feature tensor has the same resolution as
that of the pose feature tensor, i.e. 128 × 128 × 64. It is
learned in an auto-decoding [18] manner, being treated as
a free variable that is optimized together with the network
weights during training. The geometric feature tensor is fol-
lowed by three learnable convolutional layers, each with a
receptive field of 5, before feeding it to the shape decoder.
We find that these convolutional layers help smooth the fea-
tures spatially, resulting in a lower noise level in the outputs.

The pose and geometric feature tensors are concatenated
along the feature channel. In all experiments, we query the
feature tensor with a 256 × 256 UV map, i.e. the concate-
nated feature tensor is spatially 4× bilinearly upsampled.
The output point cloud has 50K points.

At each query location, the concatenated pose and ge-
ometry feature (64+64-dimensional), together with the 2D
UV coordinate of the query point, are fed into an 8-layer
MLP. The intermediate layers’ dimensions are (256, 256,
256, 386, 256, 256, 256, 3), with a skip connection from
the input to the 4th layer as in DeepSDF [18]. From the
6th layer, the network branches out 2 heads with the same
architecture to predict the displacements and point normals,
respectively. All but the last layer use BatchNorm and a
Softplus non-linearity with β = 20. The predicted normals
are normalized to unit length.

S1.2. Training

We train POP with the Adam [8] optimizer with a learn-
ing rate of 3.0×10−4, a batch size of 4, for 400 epochs. The

displacement and normal prediction modules are trained
jointly. As the normal loss relies on the nearest neighbor
ground truth points found by the Chamfer Distance, we
only turn it on when Ld roughly stabilizes from the 250th
epoch. The loss weights are set to λd = 2.0 × 104, λrd =
2.0× 103, λrg = 1.0, λn = 0.0 at the beginning of the train-
ing, and λn = 0.1 from the 250th epoch.

S1.3. Data Processing

We normalize all the data examples by removing the
body translation and global orientation from them. From
each clothed body surface, we sample 40K points to serve
as training ground truth. Note that we do not rely on any
connectivity information in the registered meshes from the
CAPE dataset.

S1.4. Baselines

NASA. We re-implement the NASA [5] model in PyTorch
and ensure the performance is on par with that reported in
the original paper. For evaluating NASA results, we first ex-
tract a surface using Marching Cubes [11] and then sample
the same number of points (50K) from it for a fair compar-
ison. The sampling is performed and averaged over three
repetitions.

SCALE. We employ the same training schedule and the
number of patches (798) as in the original SCALE pa-
per [12], using the implementation released by the authors.
We sample 64 points per patch at both training and infer-
ence to achieve the same number of output points as ours
for a fair comparison.

LBS. In the main paper Sec. 4.3, we compare with the Lin-
ear Blend Skinning (LBS) in the single scan animation task.
This is done with the help of the SMPL [10] body model:
we first optimize the SMPL body shape and pose parame-
ters to fit a minimally-clothed body to the given scan, and
then displace the vertices such that the final surface mesh
aligns with the scan. The fitted clothed body model is then
reposed by the target pose parameters.



S1.5. User Study

We conduct a large-scale user study on the Amazon Me-
chanical Turk to get a quantitative evaluation of the visual
quality of our model outputs against the point-based method
SCALE [12]. We evaluate over 6,000 unseen test examples
in the CAPE and ReSynth datasets, from different subjects,
performing different poses. For each example, the point
cloud output from POP and SCALE are both rendered with
a surfel-based renderer by Open3D [30] under the same ren-
dering settings (an example of such rendering is the Fig. 1 of
the main paper). We then present both images side-by-side
to the users and ask them to choose the one that they deem a
higher visual quality. The left-right ordering of the images
is randomly shuffled for each example to avoid users’ bias
to a certain side. The users are required to zoom-in the im-
ages before they are able to make the evaluation, and we do
not set a time limit for the viewing. Each image pair is eval-
uated by three users, and the final results in the main paper
is averaged from all the user choices on all examples.

S2. Datasets

ReSynth. The 24 outfits designed by the clothing de-
signer include varied types and styles: shirts, T-shirts, pants,
shorts, skirts, long dresses, jackets, to name a few. For
each outfit, we find the SMPL-X [20] body (provided by
the AGORA [19] dataset) that fits the subject’s body shape
in its corresponding original scan. We then use physics-
based simulation [4] to drape the clothing on the bodies
and animate them with a consistent set of motion sequences
of the subject 00096 from the CAPE dataset. The simula-
tion results are inspected manually to remove problematic
frames, resulting in 984 frames for training and 347 frames
for test for each outfit. Examples from ReSynth are shown
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Figure S1: Examples from our ReSynth dataset. The cloth-
ing is designed based on real-world scans [23], draped on
the SMPL-X [20] body model, and then simulated using
Deform Dynamics [4].

in Fig. S1. We will release the dataset for research purposes.
CAPE. The CAPE dataset [13] provides registered mesh
pairs of (unclothed body, clothed body) of humans in
clothing performing motion sequences. The three subjects
(00096, 00215, 03375) that we use in the experiments have
in total 14 outfits comprising short/long T-shirts, short/long
pants, a dress shirt, a polo shirt, and a blazer. For each out-
fit, the motion sequences are randomly split into training
(70%) and test (30%) sets.

S3. Extended Results and Discussions

Here we provide extended analysis and discussions re-
garding the main paper Tab. 2. The implicit surface base-
line, NASA [5], shows a much higher error than other meth-
ods. We find that it is majorly caused by the occasional
missing body parts in its predictions. This happens more
often for challenging, unseen body poses. The incomplete
predictions thus lead to exceptionally high bi-directional
Chamfer distance on a number of examples, hence a high
average error.

Our approach is based on the SCALE [12] baseline, but
it achieves on average 11.4% (on CAPE data) and 9.1% (on
ReSynth) lower errors than SCALE, with both margins be-
ing statistically significant (p-value≪1e-4 in the Wilcoxon
signed-rank test). Together with the user study results in
the main paper, this shows a consistent improvement on the
representation power.

In Figs. S3 and S4 we show extended qualitative compar-
isons with NASA [5] and SCALE [12] from the pose gen-
eralization experiment (Sec. 4.1 in the main paper). Please
refer to the supplementary video at https://qianlim.
github.io/POP for animated results.

S4. Run-time Comparison

Here we compare the inference speed of POP with the
implicit surface baseline, NASA [5], and the patch-based
baseline, SCALE [12].

To generate a point cloud with 50K points, POP takes on
average 48.8ms, and SCALE takes 42.4ms. The optional
meshing step using the Poisson Reconstruction [7] takes
1.1s if a mesh is desired. Both explicit representations have
comparable run-time performance. In contrast, NASA re-
quires densely evaluating occupancy values over the space
in order to reconstruct an explicit surface, which takes 12.2s
per example. This shows the speed advantage of the explicit
representations over the implicit ones.

S5. Limitations and Failure Cases

As discussed in the final section of the main paper, the
major limitation of our approach lies on the use of the UV
map. Although the UV maps are widely used to reconstruct



and model human faces [6, 14, 28], one can encounter ad-
ditional challenges when applying this technique to human
bodies. On a full body UV map such as that of SMPL, dif-
ferent body parts are represented as separate “islands” on
the UV map, see Fig. 2 in the main paper. Consequently,
the output may suffer from discontinuities at the UV is-
lands’ boundaries. Qualitatively, this may occasionally re-
sult in visible “seams” between certain body parts as shown
in Fig. S2 (a-b), or an overly sparse distribution of points be-
tween the legs in the case of dresses as shown in Fig. S2 (c),
leading to sub-optimal performance when training a unified
model for both pants and skirts.

Note, however, that such discontinuities are not always
the case. Intuitively, as the input UV positional map en-
codes (x, y, z) coordinates on the 3D body, the network can
utilize not only the proximity in the UV space but also that
in the original 3D space. We believe that the problem orig-
inates from the simple 2D convolution in the UNet pose
encoder. A promising solution is to leverage a more con-
tinuous parameterization for the body surface manifold that
is compatible with existing deep learning architectures. We
leave this for future work.

(a) (b) (c)

Figure S2: Illustrations of our limitations.

S6. Further Discussions on Related Work
Here we discuss the relationship of our method to recent

work that uses similar techniques or that aims similar goals.
We represent clothing as a displacement field on the

minimally-clothed body, in the canonical pose space. This
helps factor out the effect of the articulated, rigid trans-
formations that are directly accessible from the underly-
ing posed body. In this way, the network can focus on the
non-rigid, residual clothing deformation. Such technique
is becoming increasingly popular for clothed human shape
models that use meshes [13], point clouds [12], and implicit
functions [2, 9, 17, 25, 29].

Our shape decoder is a coordinate-based multi-layer per-
ceptron (MLP), reminiscent of the recent line of work on
neural implicit surfaces [3, 15, 18] and neural radiance

fields [16]. These methods learn to map a neural feature
at a given query location into a certain quantity, e.g. a
signed distance [18], occupancy [15], color and volume
density [16], or a displacement vector in our case. Our
work differs from others majorly in that the querying coor-
dinates live on a 2-manifold (the body surface)1 instead of
R3. Moreover, our point cloud representation belongs to the
explicit representation category, retaining an advantage in
the inference speed compared to the implicit methods. With
the recent progress in differentiable and efficient surface re-
construction from point clouds [21, 26], it becomes possible
to flexibly convert between point clouds and meshes in var-
ious applications.

Recent work on deformable face modeling [14] and
pose-controlled free-view human synthesis [9] employ sim-
ilar network architectures as ours, despite the difference in
the goals, tasks and detailed techniques. While the com-
monality implies the efficacy of the high-level architectural
design, it remains interesting to combine the detailed tech-
nical practices from each piece of work. It is also interest-
ing to note the connection between our geometric feature
tensor and the neural texture in recent work on neural ren-
dering [22, 27]: both concepts learn a spatial neural rep-
resentation that controls the output, revealing a connection
between modeling the 3D geometry and 2D appearances.

Finally, in concurrent work, MetaAvatar [29] also learns
a multi-subject model of clothed humans, which can gen-
eralize to unseen subjects using only a few depth images.
Unlike our auto-decoding learning of the geometric feature
tensor, MetaAvatar uses meta-learning to learn a prior of
pose-dependent cloth deformation across different subjects
and clothing types that helps generalize to unseen subjects
and clothing types at test-time. We believe both approaches
will inspire future work on cross-garment modeling and au-
tomatic avatar creation.

1The concurrent work by Burov et al. [1] also maps the points on the
SMPL body surface to a continuous clothing offset field, but the points’
Euclidean coordinates (with positional encoding) are used to query the
shape decoder.



NASA [5] SCALE [12], point cloud SCALE [12], meshed Ours, point cloud Ours, meshed

Figure S3: Extended qualitative results from the pose generalization experiment (main paper Sec. 4.1), on the CAPE dataset.
Best viewed zoomed-in on a color screen.
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Figure S4: Extended qualitative results from the pose generalization experiment (main paper Sec. 4.1), on the ReSynth
dataset. Best viewed zoomed-in on a color screen.
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