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Figure 1: PIXIE estimates expressive 3D humans (b, e, f) from an RGB image (a). For this, it employs experts for the body,
face (c, d), and hands (g, h), which are combined (b, e, f) by a novel moderator, according to their confidence (see Fig. 2).
PIXIE estimates appropriate body shapes (b) by implicitly learning to reason about gender from an image. Finally, PIXIE
estimates fine facial details, i.e. 3D surface displacements (c) and albedo (d), similar to state-of-the-art face-only methods.

Abstract
Recovering expressive humans from images is essential

for understanding human behavior. Methods that estimate
3D bodies, faces, or hands have progressed significantly, yet
separately. Face methods recover accurate 3D shape and
geometric details, but need a tight crop and struggle with
extreme views and low resolution. Whole-body methods are
robust to a wide range of poses and resolutions, but provide
only a rough 3D face shape without details like wrinkles.
To get the best of both worlds, we introduce PIXIE, which
produces animatable, whole-body 3D avatars with realistic
facial detail, from a single image. For this, PIXIE uses two
key observations. First, existing work combines indepen-
dent estimates from body, face, and hand experts, by trust-
ing them equally. PIXIE introduces a novel moderator that
merges the features of the experts, weighted by their confi-
dence. All part experts can contribute to the whole, using
SMPL-X’s shared shape space across all body parts. Sec-
ond, human shape is highly correlated with gender, but ex-
isting work ignores this. We label training images as male,
female, or non-binary, and train PIXIE to infer “gendered”
3D body shapes with a novel shape loss. In addition to 3D
body pose and shape parameters, PIXIE estimates expres-
sion, illumination, albedo and 3D facial surface displace-
ments. Quantitative and qualitative evaluation shows that
PIXIE estimates more accurate whole-body shape and de-
tailed face shape than the state of the art. Models and code
are available at pixie.is.tue.mpg.de.

1. Introduction

To model human behavior, we need to capture how peo-
ple look, how they feel, and how they interact with each
other. To facilitate this, our goal is to reconstruct whole-
body 3D shape and pose, facial expressions, and hand ges-
tures from an RGB image. This is challenging, as humans
vary in shape and appearance, they are highly articulated,
they wear complex clothing, they are often occluded, and
their face and hands are small, yet highly deformable. For
these reasons, the community studies the body [13, 47, 52],
hands [14, 29, 38, 110] and face [21] mostly separately.

Recent whole-body statistical models [46, 70, 104] en-
able approaches to address the problem holistically, by
jointly capturing the body, face and hands. ExPose [18]
reconstructs SMPL-X [70] meshes from an RGB image,
using “expert” sub-networks for the body, face and hands.
However, ExPose’s part experts operate completely inde-
pendently, as they only “see” their respective part image.
Thus, they do not exploit the correlations between parts to
overcome challenges like occlusion or motion blur.

Face-only methods [22, 105] are well studied and re-
cover accurate facial shape, albedo and geometric details,
which are important to capture emotions. However, they
need a tight crop around the face and struggle with extreme
viewing angles and faces that are small, low-resolution or
occluded. While whole-body methods [18, 46, 70, 77, 104]
handle these challenges well, they estimate average-looking



Figure 2: PIXIE infers the confidence of its body, face and
hand experts, and fuses their features accordingly. Chal-
lenges, like occlusions, are resolved with full-body context.
(L) Input image. (R) Color-coded part-expert confidence.

face shapes, without face albedo and fine geometric details.
To get the best of all worlds, we introduce PIXIE (“Pix-

els to Individuals: eXpressive Image-based Estimation”).
PIXIE estimates expressive whole-bodied 3D humans from
an RGB image more realistically than existing work. To do
so, it pushes the state of the art in three ways.

First, PIXIE learns not only experts for the body, face
and hands, but also a novel moderator that estimates their
confidence in each sub-image, and fuses their features
weighted by this. The learned fusion helps improve whole-
body shape, using SMPL-X’s shared shape space across all
body parts. Moreover, it helps to robustly estimate head
and hand pose when these are ambiguous (e.g. occlusions
or blur) by using full-body context; see Fig. 2 for examples.

Second, PIXIE significantly improves “gendered” body
shape realism. While human shape is highly correlated with
gender, existing work ignores this and estimates inaccurate
body shapes – often with the wrong gender or with a gender-
neutral shape. An exception is SMPLify-X, but it uses an
offline gender classifier and fits a gender-specific SMPL-X
model. Instead, using a single unisex SMPL-X model en-
ables end-to-end training of neural nets. PIXIE adopts this
approach, and learns to implicitly reason about shape. For
this, we define male, female, and non-binary body-shape
priors within the SMPL-X shape space. At training time,
given automatically created gender labels for input images,
we train PIXIE to output plausible shape parameters for the
specified gender. At inference time, PIXIE needs no gen-
der labels, is applicable to any in-the-wild image, and sup-
ports non-binary genders. Note that this approach is gen-
eral and is relevant for the broader community (face, body,
whole-body). Body shape is also correlated with face shape
[28, 35, 51]. Thus, we do the same “gendered” training
for our face expert; this allows PIXIE to use face informa-
tion to inform body shape. This training and network archi-
tecture significantly improves body shape both qualitatively
and quantitatively.

Third, PIXIE’s face expert additionally infers facial
albedo and dense 3D facial-surface displacements. For this,
we draw inspiration from Feng et al. [22], and go beyond
them in three ways: (1) We use a whole-body shape space,
rather than a face-only space, to capture correlations be-
tween the body and face shape. (2) We use photometric and

identity losses on faces to inform whole-body shape. (3)
We use the inferred geometric details only when the face
expert is confident, as judged by the moderator. As shown
in Fig. 1, this results in whole-body 3D humans with de-
tailed faces that can be fully animated.

To summarize, here we make three key contributions:
(1) We train a novel moderator, that infers the confidence of
body-part experts and fuses their features weighted by this.
This improves shape and pose inference under ambiguities.
(2) We train the network to implicitly reason about gender,
i.e. without gender labels at test time, with a novel “gen-
dered” 3D shape loss that encourages likely body shapes.
(3) We extend our face expert with branches that estimate
facial albedo and 3D facial-surface displacements, enabling
whole-body animation with a realistic face. PIXIE is a step
towards automatic, accurate and realistic 3D avatar creation
from a single RGB image. Models and code are available
for research purposes mat pixie.is.tue.mpg.de.

2. Related work
Body reconstruction: For years, the community fo-

cused on the prediction of 2D or 3D landmarks for the body
[17], face [15] and hands [84, 101], with a recent shift to-
wards estimating 3D model parameters [13, 45, 47, 50, 68,
72, 89] or 3D surfaces [53, 60, 80, 81, 98]. One line of
work simplifies the problem by using proxy representations
like 2D joints [13, 32, 33, 40, 64, 72, 83, 95, 111], silhou-
ettes [8, 40, 72], part labels [68, 79] or dense correspon-
dences [76, 107]. These are then “lifted” to 3D, either as
part of an energy term [13, 40, 106] or using a regressor
[64, 68, 72, 95]. To overcome ambiguities, they use priors
such as known limb lengths [57], joint angle limits [9], or a
statistical body model [13, 40, 68, 70, 72] like SMPL [61]
or SMPL-X [70]. While these approaches benefit from 2D
annotations, they cannot overcome errors in the proxy fea-
tures and do not fully exploit image context. The alternative
is to directly regress 3D skeletons [58, 71, 87, 88, 91], sta-
tistical model parameters [18, 25, 45, 47, 48, 50, 52, 89], 3D
meshes [53, 60], depth maps [27, 85], 3D voxels [98, 112]
or distance fields [80, 81] from the image pixels.

Face reconstruction: Most modern monocular 3D face
reconstruction methods estimate the parameters of a pre-
computed statistical face model [21]. Similar to the body
literature, this problem is tackled with both optimization
[10, 12, 94, 99] and regression methods [23, 42, 82, 92].
Many learning-based approaches follow an analysis-by-
synthesis strategy [20, 92, 93], which jointly estimates ge-
ometry, albedo, and lighting, to render a synthetic image
[62, 73] that is compared with the input. Recent work
[20, 22, 31] further employs face-recognition terms [16]
during training to reconstruct more accurate facial geome-
try. Even geometric details, such as wrinkles, can be learned
from large collections of in-the-wild images [22, 96]. We



refer to Egger et al. [21] for a comprehensive overview. The
major downsides of face-specific approaches are their need
for tightly cropped face images and their inability to han-
dle non-frontal images. The latter is mainly due to the lack
of supervision; 2D landmarks may be missing or the face
might not even be detected at all, in which case the photo-
metric term is not applicable. By integrating face and body
regression, PIXIE regresses head pose and shape robustly
in situations where face-only methods fail and lets the face
contribute to whole-body shape estimation.

Hand reconstruction: While hand pose estimation is
most often performed from RGB-D data, there has been a
recent shift towards the use of monocular RGB images [11,
14, 37, 38, 41, 55, 65, 90, 115]. Similar to the body, we split
these into methods that predict 3D joints [41, 65, 90, 115],
parameters of a statistical hand model [11, 14, 38, 55, 110],
such as MANO [75], or a 3D surface [29, 54].

Whole-body reconstruction: Recent methods approach
the problem of human reconstruction holistically. Some of
these estimate 3D landmarks for the body, face and hands
[43, 102], but not their 3D surface. This is addressed by
whole-body statistical models [46, 70, 104], that jointly
capture the 3D surface for the body, face and hands.

SMPLify-X [70] fits SMPL-X [70] to 2D body, hand
and face keypoints [17] estimated in an image. Xiang
et al. [103] estimate both 2D keypoints and a part orien-
tation field and fit Adam [46] to these. Xu et al. [104] fit
GHUM [104] to detected body-part image regions. While
these methods work, they are based on optimization, conse-
quently they are slow and do not scale up to large datasets.

Deep-learning methods [18, 77] tackle these limitations,
and quickly regress SMPL-X parameters from an image.
ExPose [18] uses “expert” sub-networks for the body, face
and hands; the body expert estimates the body and rough
part (hand/face) pose from the full-body image, while part
experts refine the rough part poses using only local image
information (hand/face crop). ExPose merges the output of
its experts by always trusting them. Instead, we evaluate
the confidence of each expert for each sub-image and fuse
body/face and body/hand features weighted by this. To ac-
count for different body-part sizes, we use ExPose’s body-
driven attention, and multiple data sources for both part-
only and whole-body supervision.

FrankMocap [77] is similar to ExPose and adds an
(optional) optimization step to better align the estimated
SMPL-X mesh with the image. Zhou et al. [114] train a net-
work to regress a body-and-hands (SMPL+H) model [75]
and the detailed MoFA [93] face model from an RGB im-
age, following a body-part attention mechanism and multi-
source training like ExPose. Note that SMPL+H and MoFA
are disparate models, which are (offline) manually cut-and-
stitched together. Instead, we use the whole-body SMPL-X
model [70] that captures the shape of all body parts together,

thus no stitching is required. Zhou et al. fuse only hand-
body features in a “binary” fashion, while their face model
is “disconnected” from the body. Instead, we fuse both face-
body and hand-body features in a “fully analog” fusion, and
thus our face expert can inform the whole-body shape. Zhou
et al. have no face camera, and need PnP-RANSAC [26]
and Procrustes to align their face to the image. Instead, we
infer a face-specific camera and need no extra steps. Zhou
et al. use a complicated architecture, with several modules
that are trained separately, and is applicable only to whole
bodies. Instead, we use no intermediate tasks to avoid pos-
sible sources of error and train our model end to end. Our
full model is applicable to whole bodies, but the part experts
are also (separately) applicable to part-only data.

3. Method
Here we introduce PIXIE, a novel model for reconstruct-

ing SMPL-X [70] humans with a realistic face from a single
RGB image. It uses a set of expert sub-networks for body,
face/head, and hand regression, and combines them in a big-
ger network architecture with three main novelties: (1) We
use a novel moderator that assesses the confidence of part
experts and fuses their features weighted by this, for robust
inference under ambiguities, like strong occlusions. (2) We
use a novel “gendered” shape loss, to improve body shape
realism by learning to implicitly reason about gender. (3)
In addition to the albedo predicted by our face expert, we
employ the surface details branch of Feng et al. [22].

3.1. Expressive 3D Body Model

We use the expressive SMPL-X [70] body model, which
captures whole-body pose and shape, including facial ex-
pressions and finger articulation. It is a differentiable func-
tion M(β,θ,ψ), parameterized by shape β, pose θ and ex-
pression ψ, that produces a 3D mesh. The shape param-
eters β ∈ R200 are coefficients of a linear shape space,
learned from registered CAESAR [74] scans. This is a joint
shape space for the body, face, and hands, naturally cap-
turing their shape correlations. The expression parameters
ψ ∈ R50 are also coefficients of a low-dimensional linear
space. The overall pose parameters θ consist of body, jaw
and hand pose vectors. Each joint rotation is encoded as a
6D vector [113], except for the jaw, which uses Euler an-
gles, i.e. a 3D vector. We follow the notation of [47] and
denote posed joints with X(θ,β) ∈ RJ×3, where J = 55.
Camera: To reconstruct SMPL-X from images, we use the
weak-perspective camera model with scale s ∈ R and trans-
lation t ∈ R2. We denote the joints X and model vertices
M projected on the image with x ∈ RJ×2 andm ∈ RV×2.

3.2. PIXIE Architecture

PIXIE uses the architecture of Fig. 3, and is trained end
to end. All model components are described below.



Figure 3: Body, face/head and hand image crops {Ib, If ,
Ih} are fed to the expert encoders {Eb, Ef , Eh} to pro-
duce part-specific features {Fb, Ff , Fh}. Our novel mod-
erators {Mf , Mh} estimate the confidence of experts for
these images, and fuse face-body and hand-body features
weighted by this, to create {F fused

f , F fused
h }. These are fed

to {Rfused
f ,Rfused

h } for robust regression. DECA’s [22] Rd

estimates fine geometric details. Icon from Freepik.

Input images: Given an image I with full resolution, we
assume a bounding box around the body. We use this to
crop and downsample the body to Ib to feed our network.
However, this makes hands and faces too low resolution.
We thus use an attention mechanism [18] to extract from I
high-resolution crops for the face/head, If , and hand, Ih.
Feature encoding: We feed {Ib, If , Ih} to separate expert
encoders {Eb, Ef , Eh} to extract features {Fb, Ff , Fh}.
We use ResNet-50 [39] for the face/head and hand experts
to generate Ff , Fh ∈ R2048. The body expert Eb uses HR-
Net [86], followed by convolutional layers that aggregate
the multi-scale feature maps, to generate Fb ∈ R2048.
Feature fusion (moderator): We identify the expert pairs
of {body, head} and {body, hand} as complementary, and
learn the novel moderators {Mf ,Mh} that build “fused”
features {F fused

f , F fused
h } and feed them to face/head and

hand regressors {Rfused
f ,Rfused

h } (described below) for more
informed inference. A moderator is implemented as a multi-
layer perceptron (MLP) and gets the body, Fb, and part, Fp

(Ff or Fh), features and fuses them with a weighted sum:

F fused
p = wpF

p
b + (1− wp)Fp, (1)

wp =
1

1 + exp (−t ∗Mp(F p
b , Fp))

, (2)

whereMp (Mf orMh) is the part moderator, wp (wf or
wh) is the expert’s confidence, and F p

b (F f
b or Fh

b ) is the
body feature Fb transformed by the respective “extractor”,
i.e. the linear layerLp (Lh orLf ) between the body encoder
Eb and part moderatorMp. Finally, t is a learned temper-
ature weight, jointly trained with all network weights with
the losses of Sec. 3.3, with no t-specific supervision.

Parameter regression: We use two main regressor types:
(1) We use the body, face/head, and hand {Rb,Rf ,Rh} re-
gressors, that get features only from the respective expert
encoder {Fb, Ff , Fh}. Rb infers the camera Cb = (sb, tb),
and body rotation and pose θb up to (excluding) the head
and wrist. Rf infers the camera Cf = (sf , tf ), face albedo
αf , and lighting lf . Rh infers the camera Ch = (sh, th).
(2) We use the face/head, Rfused

f , and hand, Rfused
h , regres-

sors that get from moderators the “fused” features, F fused
f

and F fused
h . Rfused

h infers the wrist θwrist and finger pose
θfingers. Rfused

f infers expressions ψ, head rotation θhead, and
jaw pose θjaw. Importantly,Rfused

f also infers body shape β,
letting our face expert contribute to whole-body shape.
Detail capture: We use the fine geometric details branch
Rd of Feng et al. [22] that, given a face image If , estimates
dense 3D displacements on top of FLAME’s [59] surface.
We convert the displacements from FLAME’s to SMPL-X’s
UV map, and apply them on PIXIE’s inferred head shape.
However, inferring geometric details from full-body images
is not trivial; faces tend to be much noisier in these com-
pared to face-only images. We account for this with our
moderator, and use the inferred displacements only when
the face/head expert is confident.

3.3. Training Losses

To train PIXIE we use body, hand and face losses:

L = Lbody + Lhand + Lface + Lupdate, (3)

defined as follows; the hat (e.g. x̂) denotes ground truth.
Body losses: Following [18], we use a combination of a 2D
re-projection, a 3D joint, and a SMPL-X parameter loss:

Lbody = Lbody
2D/3D-Joints + Lbody

params, (4)

Lbody
2D/3D-Joints =

J∑
j=1

‖x̂j − xj‖1 +

J∑
j=1

∥∥∥X̂j −Xj

∥∥∥
1
, (5)

Lbody
params =

∥∥∥θ̂ − θ∥∥∥2
2

+
∥∥∥β̂ − β∥∥∥2

2
. (6)

Hand losses: We employ a similar set of losses to train the
3D hand pose and shape estimation network:

Lhand = Lhand
2D/3D-Joints + Lhand

params, (7)

defined similarly to Lbody
2D/3D-Joints and Lbody

params of the body, but
using the hand joints and pose parameters θwrist and θfingers.
Face losses: We adopt standard losses used by the 3D face
estimation community [20, 22]:

Lface = Llmk + Llmk-closure + Lface
params + Lpho + Lid. (8)

The landmark loss penalizes the difference between de-
tected [15] target 2D landmarks m̂j and respective model



landmarks (lying onMf ) projected on the image plane,mj :

Llmk =

Nlmk∑
j=1

‖m̂j −mj‖1 . (9)

Following [22], we also compute a loss for the set E of
landmarks on the upper, lower eyelid and upper, lower lip:

Llmk-closure =
∑

(i,j)∈E

‖(m̂i − m̂j)− (mi −mj)‖1 . (10)

The face parameter loss Lface
params follows Lbody

params, but for
face pose θface only. This loss is only used for face crops
from body data, when the target face pose is available.

Given the predicted 3D face mesh Mf as a subset of M ,
face albedo αf and lighting lf , we render a synthetic im-
age Ir for the input subject using the differentiable renderer
from Pytorch3D [73]. We then minimize the difference be-
tween the input face image If and the rendered image Ir:

Lpho = ‖S� (If − Ir)‖1,1 , (11)

where S is a binary face mask with value 1 in the face skin
region, and 0 elsewhere, and� denotes the Hadamard prod-
uct. The segmentation mask prevents errors from non-face
regions influencing the optimization, and we use the seg-
mentation network of Nirkin et al. [67] to extract S. The
image formation process is the same as in Feng et al. [22].

Following [20, 30], we use a pre-trained face recognition
network [16], fid, to compute embeddings for the rendered
image Ir and the input If . We then maximize the cosine
similarity between the two identity embeddings

Lid = 1− < fid(If ), fid(Ir) >

‖fid(If )‖2 · ‖fid(Ir)‖2
. (12)

Priors: Due to the difficulty of the problem, we use addi-
tional priors to constrain PIXIE to generate plausible solu-
tions. For expression parameters, we use a Gaussian prior:

Lexp (ψ) = ‖ψ‖22 . (13)

We also add soft regularization on jaw and face pose:

Ljaw(θjaw) =
∣∣∣θpitch

jaw

∣∣∣2 +
∣∣θroll

jaw

∣∣2 +
∣∣∣min(θyaw

jaw , 0)
∣∣∣2 , (14)

Lface(θface) =
∣∣max(

∣∣θyaw
face

∣∣ , 90)
∣∣2 . (15)

All these priors are “standard” regularizers, empirically
found to discourage implausible configurations (extreme
values, unrealistic shape/pose, inter-penetrations, etc).
Gender: As gender strongly affects body shape, we use
a gender-specific shape prior during training, when gen-
der labels are available. For this, we register SMPL-X to

CAESAR [74] scans, and compute the mean µ and covari-
ance Σ of shape parameters for each gender. We then use:

Lshape (β) =


(β − µF)T ΣF(β − µF) if female
(β − µM)T ΣM(β − µM) if male
‖β‖22 o/w.

(16)

When gender is unknown, we use a Gaussian prior com-
puted over all scans/registrations, irrespective of gender.
Please note that we do not need gender labels for inference.
Feature update loss: We encourage the transformed body
features F p

b (F f
b or Fh

b ) to match F fused
p with a loss that was

empirically found to stabilize network training:

Lupdate =
∥∥F p

b − F
fused
p

∥∥
1
. (17)

3.4. Implementation Details

Training data: For whole-body data we use the cu-
rated SMPL-X fits of [18], and SMPL-X fits to whole-
body COCO data [43]. For hand-only data we use
FreiHAND [116] and Total Motion [103]. For face/head
data we use VGGFace2 [16] and detectNlmk = 68 2D land-
marks with the method of Bulat et al. [15]. We get gender
annotations by running the method of Rothe et al. [78] on
many photos per identity and using majority voting to im-
prove robustness. For data augmentation, see Sup. Mat.
Network training: We do multi-step training that empiri-
cally aids stability. We pre-train on part-only data, and train
on whole-body data end to end; for details see Sup. Mat.

4. Experiments
4.1. Evaluation Datasets

EHF [70]: We evaluate whole-body accuracy on this. It has
100 RGB images of 1 minimally-clothed subject in a lab
setting with ground-truth SMPL-X meshes and 3D scans.
AGORA [69]: We evaluate whole-body and body-only ac-
curacy on this, using its body-face-hands (BFH) subset. It
has rendered [6] photo-realistic images of 3D human scans
[1, 2, 4, 5] in scenes [3, 7]. It has SMPL-X ground truth
recovered from scans, images and semantic labels [108].
3DPW [100]: We evaluate main-body accuracy on this. It
captures 5 subjects in indoor/outdoor videos with SMPL
pseudo ground truth, recovered from images and IMUs.
NoW [82]: We use it to evaluate face/head-only accuracy.
It contains 3D head scans for 100 subjects, and 2054 images
with various viewing angles and facial expressions.
FreiHAND [116]: We evaluate hand-only accuracy on this.
It has 37k hand/hand-object images of 32 subjects, with
MANO ground truth, recovered from multi-view images.

4.2. Evaluation Metrics

Mesh alignment: Prior to computing a metric, we align
estimated meshes to ground-truth ones. The prefix “PA”



Method Type Body
model Time (s) PA-V2V (mm) ↓ TR-V2V (mm) ↓ PA-MPJPE (mm) ↓ PA-P2S (mm) ↓

All Body L/R hand Face All Body L/R hand Face MPJPE-14 L/R hand Mean Median

SMPLify-X′ [70] O SMPL-X 40-60 52.9 56.37 11.4/12.6 4.4 79.5 92.3 21.3/22.1 10.9 73.5 12.9/13.2 28.9 18.1

SMPLify-X [70] O SMPL-X 40-60 65.3 75.4 11.6/12.9 4.9 93.0 116.1 23.8/24.9 11.5 87.6 12.2/13.5 36.8 23.0
MTC [103] O Adam 20 N/A N/A N/A N/A N/A N/A N/A N/A 107.8 16.3/17.0 41.3 29.0

SPIN [52] R SMPL 0.01 N/A 60.6 N/A N/A N/A 96.8 N/A N/A 102.9 N/A 40.8 28.7
FrankMocap [77] R SMPL-X 0.08 57.5 52.7 12.8/12.4 N/A 76.9 80.1 32.1 / 31.9 N/A 62.3 13.2/12.6 31.6 19.2
ExPose [18] R SMPL-X 0.16 54.5 52.6 13.1/12.5 4.8 65.7 76.8 31.2 / 32.4 15.9 62.8 13.5/12.7 28.9 18.0
PIXIE (ours) R SMPL-X 0.08-0.10 55.0 53.0 11.2/11.0 4.6 67.6 75.8 25.6/27.0 14.2 61.5 11.7/11.4 29.9 18.4

Table 1: Evaluation on EHF [70]. PIXIE is on par with the state of the art w.r.t. body and face performance, but predicts
better hand poses. SMPLify-X′ uses the ground-truth focal length (excluded from bold). Run-times were measured on an
Intel Xeon W-2123 3.60GHz machine with a NVIDIA Quadro P5000 GPU. “O/R” denotes Optimization/Regression.

denotes Procrustes Alignment (solving for scale, rotation
and translation), while “TR” denotes translation alignment.
“TR” is stricter, as it does not factor out scale and rotation.
When reporting hand-/face-only metrics for the full body,
we align each part separately.
Mean Per-Joint Position Error (MPJPE): We report
the mean Euclidean distance between the estimated and
ground-truth joints. For the body-only metric, we com-
pute the 14 LSP-common joints [44] as a common skeleton
across different body models, using a linear joint regressor
[13, 56] on the estimated and ground-truth vertices. This is
a standard metric, but is too sparse; it cannot capture errors
in full 3D shape (i.e. surface), or all limb rotation errors.
Vertex-to-Vertex (V2V): For methods that infer meshes
with the same topology as the ground-truth ones, e.g.
SMPL(-X) estimations and SMPL(-X) ground truth, we
compute the mean per-vertex error by taking into account
all vertices. This is not possible for methods with different
topology, e.g. SMPL estimations for SMPL-X ground truth,
and vice versa. For such cases, we compute a main-body
variant of V2V, i.e. without the hands and head, as SMPL
and SMPL-X share the same topology for the main body.
FB-V2V is the weighted sum of body (B), hand (LH, RH)
and face (F) errors: FB = B + LH+RH+F

3 . V2V is stricter
than MPJPE; it also captures 3D shape errors and unnatural
limb rotations (for the same joint positions).
Point-to-Surface (P2S): To compare PIXIE with methods
that use a different mesh topology to SMPL(-X), e.g. MTC
[103], we measure the mean distance from ground-truth ver-
tices to the surface of the estimated mesh. P2S is stricter
than MPJPE; it captures errors in 3D shape, but not unnatu-
ral limb rotations (for the same joint positions).

4.3. Quantitative Evaluation

Whole-body. In Tab. 1 - 2 we report whole-body met-
rics (“All”), by taking into account the body, face and hands
jointly. We add body-only (“Body”), hand-only (“L/R
hand”), and face-only (“Face”) variants for completeness.
EHF [70]: Table 1 compares PIXIE to three baseline sets:
(1) the optimization-based SMPLify-X [70] and MTC [103]
that infer SMPL-X and Adam, (2) the regression-based

Method PA-V2V (mm) ↓ TR-V2V (mm) ↓
All Body All Body

Naive Body 59.7 54.3 70.5 83.4
“Copy-paste” 60.3 55.5 72.9 82.4
PIXIE (ours) 55.0 53.0 67.6 75.8

Table 2: Ablation for our moderator on EHF [70]. “Naive
body” denotes a single regressor for the whole body, and
“Copy-Paste” denotes a naive integration of the independent
expert estimations on the inferred body.

SPIN [52] that infers SMPL, and (3) the regression-based
ExPose [18] and FrankMocap [77] that infer SMPL-X.
Note that MTC does not estimate the face. PIXIE outper-
forms optimization methods on most metrics, while being
significantly faster. Moreover, it is on par with regression
methods, both in terms of error metrics and runtime, which
drops to 0.08 sec for known body-part crops.
AGORA [69]: Figure 4 compares PIXIE to whole-body
[18, 70, 77] and body-only [45, 47, 50, 52, 60, 89] regres-
sors, for a varying occlusion degree. PIXIE outperforms
all methods, and is competitive on body-only metrics even
to the occlusion-aware PARE [50]. Note that AGORA is
much more complex and natural than EHF, making the re-
sults more representative of real-world scenarios.
Ablation for moderators: Table 2 compares PIXIE to
naive whole-body regression (no body-part experts) and the
“copy-paste” fusion strategy. The latter copies pose param-
eters from the part experts (see [18, 77]), as well as shape
parameters from the face expert, to the whole body.

The naive version does not benefit from the expertise
of the part experts. “Copy-paste” fusion can lead to erro-
neous hand/face orientation inference, since the respective
experts lack global context. Moreover, estimating whole-
body shape from a face image is not always reliable, e.g.
when a person faces away from the camera (Fig. 2). PIXIE
fuses “global” body and “local” part features with its mod-
erators. In this way, it estimates more accurate 3D bod-
ies and is more robust to challenging ambiguities (blur, oc-
clusion) than existing whole-body regressors, especially on
stricter metrics without Procrustes alignment.
Ablation for “gendered” shape loss on 3DPW [100]: By



Figure 4: Comparison against state-of-the-art full-body (left) and body-only (right) methods on AGORA [69], using the
vertex-to-vertex (V2V) metric (mm) for varying percentages of occlusion. Unless otherwise noted (in parens), we use Open-
Pose to extract person bounding boxes. PIXIE outperforms existing methods, including the occlusion-aware PARE [50].

Method Body PA-MPJPE TR-MPJPE Body PA-V2V
model (mm) ↓ (mm) ↓ (mm) ↓

HMR [47] SMPL 81.3 130.0 65.2
SPIN [52] SMPL 59.2 96.9 53.0
FrankMocap [77] SMPL-X 61.9 96.7 55.1
ExPose [18] SMPL-X 60.7 93.4 55.6
PIXIE (ours) SMPL-X 61.3 91.0 50.9

Table 3: Evaluation on 3DPW [100]. PIXIE is the best for
the stricter TR-MPJPE (joints) and V2V (surface) metrics.

removing our “gendered” shape loss, the PA-V2V error in-
creases from 50.9 to 51.7 mm. A qualitative ablation is
shown in Fig. 5; learned implicit reasoning about gender
gives more realistic body shapes. SMPL-X’s shared shape
space for the whole body lets parts contribute to the whole.

Parts-only: For completeness, we use standard bench-
marks for body-only, face-only, and hand-only evaluation.
Body-only on 3DPW [100]: Table 3 shows that PIXIE
performs on par FrankMocap [77] and ExPose [18] and is
worse than SPIN [52], for the PA-MPJPE metric, but out-
performs them all in the stricter TR-MPJPE (joints) and
V2V (surface) metrics.
Face-only on NoW [82]: Table 4 shows that PIXIE outper-
forms not only the expressive whole-body method ExPose
[18], but also strong and dedicated face-only methods, ex-
cept for the recent work of Feng et al. [22].
Hand-only on FreiHAND [116]: Table 5 shows that our
hand expert performs on par with the whole-body ExPose
[18], is a bit worse than the hand-specific “MANO CNN”
[116], but outperforms the hand expert of Zhou et al. [114].

4.4. Qualitative Evaluation

Figure 6 compares PIXIE with FrankMocap [77] and
ExPose [18], which also regresses SMPL-X. Both baselines
fail when the hand expert faces ambiguities (row 2); PIXIE
gains robustness by using the full-body context. Both base-
lines give body shapes that look average (rows 1, 4) or have

Method PA-P2S for face/head (mm) ↓
Median (mm) ↓ Mean (mm) ↓ Std (mm) ↓

3DMM-CNN [97] 1.84 2.33 2.05
PRNet [23] 1.50 1.98 1.88
Deng et al. [20] 1.23 1.54 1.29
RingNet [82] 1.21 1.54 1.31
3DDFA-V2 [36] 1.23 1.57 1.39
DECA [22] 1.09 1.38 1.18

ExPose [18] 1.26 1.57 1.32
PIXIE (ours) 1.18 1.49 1.25

Table 4: Evaluation on NoW [82]. PIXIE is better than
the whole-body ExPose, it outperforms many strong face-
specific methods, and is a bit worse than DECA [22].

Method PA-MPJPE PA-V2V PA-F@ PA-F@
(mm) ↓ (mm) ↓ 5mm ↑ 15mm ↑

“MANO CNN” [116] 11.0 10.9 0.516 0.934

ExPose [18] hand expert 12.2 11.8 0.484 0.918
Zhou et al. [114] 15.7 - - -
PIXIE hand expert 12.0 12.1 0.468 0.919

Table 5: Evaluation on FreiHAND [116]. PIXIE’s hand
expert is on par with the hand expert of ExPose, but clearly
outperforms the more related Zhou et al. [114] that also uses
hand-body feature fusion.

the wrong gender (rows 2, 3); PIXIE gives the most real-
istic shapes due to its “gendered” shape loss. FrankMocap
fails for strong occlusions (rows 1, 3). Lastly, ExPose strug-
gles with accurate facial expressions, and FrankMocap with
head rotations (rows 1, 3); PIXIE outperforms both with its
strong face/head expert and predicts a more realistic face.

Figure 7 compares PIXIE with Zhou et al. [114], recent
work that also estimates a textured face. PIXIE gives more
accurate poses (see how hands and faces align to the image),
as it fuses both face-body and hand-body expert features,
weighted by their confidence. PIXIE also gives more real-
istic body shapes, both due to its gendered shape loss and
due to part experts contributing to whole-body shape, using
SMPL-X’s shared body, hand and face shape space.



Figure 5: Ablation for the “gendered” shape loss and the
shared shape space (body/head). From left to right: (1)
RGB Image, (2) shape prediction only from the body image,
and PIXIE without (3) and with (4) the “gendered” shape
loss. We always use the gender-neutral SMPL-X model.

Figure 6: Qualitative comparison. From left to right: (1)
RGB Image, (2) ExPose [18], (3) FrankMocap [77], (4)
PIXIE, (5) PIXIE with predicted albedo and lighting.

Future work: Mesh-to-image misalignment is a common
limitation of regressors that pool “global” features from
the image, losing local information. This could be tackled
with “pixel-aligned” features [34, 50, 80, 109]. Moreover,
SMPL-X models bodies without clothing; adding clothing
models [19, 63] is a challenging but promising avenue. Fur-
thermore, due to the formulation of the photometric term
the model prefers to explain image evidence using lighting,
rather than albedo, which leads to wrong skin tone predic-
tions. Future work could further improve cases with self-
contact [24, 66], or other extreme ambiguities.

Figure 7: Comparison with Zhou et al. [114]. From left
to right: (1) RGB image, (2) Zhou et al., (3) PIXIE with
inferred facial details and (4) inferred albedo and lighting.
Note that Zhou et al. use tight face crops through Dlib [49]
to improve performance; PIXIE needs no tight face crops.

5. Conclusion
We present PIXIE, a novel expressive whole-body recon-

struction method that recovers an animatable 3D avatar with
a detailed face from a single RGB image. PIXIE uses body-
driven attention to leverage dedicated body, head and face
experts. It learns a novel moderator that reasons about the
confidence of each expert, to fuse their features according
to confidence, and exploit their complementary strengths. It
uses the best practices from the face community for accurate
faces with realistic albedo and geometric details. The face
expert can contribute to more realistic whole-body shapes,
by using a shared face-body shape space. To further im-
prove shape, PIXIE uses implicit reasoning about gender,
to encourage likely “gendered” body shapes. Qualitative
results show natural and expressive humans, with improved
body shape, well articulated hands, and realistic faces, com-
parable to the best face-only methods. We believe that
PIXIE will be useful for many applications that need ex-
pressive human understanding from images.
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Bernard, Hyeongwoo Kim, Patrick Pérez, and Christian
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